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SYNERGIA 

 Beam dynamics simulation 

 

 Single-particle dynamics 

 

 Multi-particle dynamics where  
the particle-particle interactions  
are important 

 Space charge / beam-beam interaction / electron cloud / wakefields 

 

 Parallel, 3d space charge Particle-in-cell (PIC) code 
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Procedures of Particle-
in-cell Method 
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particles 

field mesh 

Charge density 

Electric field 

Interpolation of the 
charges to the filed mesh 

1. Deposit Charge 

Electric field 

• Interpolation of the 
fields from grid points 
to particle positions 
 

• Integration of the 
equation of motion • Poisson solver using 

spectrum method 
 

• From the scalar field 
then solve the 
electric field 



Parallel PIC  1. charge deposition 

Task-1 Task-2 Task-3 Task-4 Task-N 

• Randomly distribute particles into MPI tasks 
• Each task has the entire spatial domain  
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Task-1 Task-2 Task-3 Task-4 Task-N 

• Distributed charge deposition 

Parallel PIC  1. charge deposition 
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Task-1 Task-2 Task-3 Task-4 Task-N 

• Collecting local charge densities via 
MPI_Allreduce() 

Global-rho 

MPI_Allreduce() 

local-rho 

Parallel PIC  1. charge deposition 
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MPI 
Allgather Phi->Ex,y,z Distributed FFT 

• Spatial decomposition in field solver 
• Global-rho -> phi -> local-En -> global-En 

Global-rho 

Task1 

Task2 

Task3 

TaskN 

Global-Ex,y,z 

Parallel PIC  2. Field Solver (charge density -> fields) 
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Apply Kicks 

Task-1 Task-2 Task-3 

particles particles particles 
E E E 

Parallel PIC  3. apply kicks 
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Scalability and Performance 
Large problem sizes 

Strong scaling Weak scaling 
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Scalability and Performance 
Medium problem sizes 

Machine 
• Fermilab’s Wilson AMD Cluster 
• AMD 6128 Opteron 2GHz 
• Quad-socket eight-core (32 cores total) 
• Infiniband inter-connection 

Benchmark Problem 
 

• Four FODO cells 
• 8 steps/cell 
• 2nd order maps 

 
• Space Charge 

• 32 x 32 x 256 grid 
 

• 2,621,440 particles 
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Base strong scaling / performances 

• Benchmark 
• Four FODO cells 

• 8 steps/cell 
• 2nd order maps 

• Space Charge 
• 32 x 32 x 256 grid 

• 2,621,440 particles 
• Machine 

• Fermilab’s Wilson Cluster 
• 32-core AMD nodes with 

Infiniband interconnection 
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Base strong scaling / performances 

Propagate-total 

get-phi2 (FFT) 

get-global-En (MPI_Allgather) 

get-global-rho (MPI_Allreduce) 

independent operations 
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Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

• Extra FFT computation on each node 
• Alternative FFT implementations 
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  Global communication dominates 
 

• Extra FFT computation on each node (comm. avoidance) 
• Reduce MPI tasks (simplifies traffic routes) 
• Use multi-threading to offload intra-node communications 
• Alternative MPI implementations / optimizations options 

 



Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

 Extra FFT computation on each node 
• Alternative FFT implementations 
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  Global communication dominates 
 

 Extra FFT computation on each node (comm. avoidance) 
• Reduce MPI tasks (simplifies traffic routes) 
• Use multi-threading to offload intra-node communications 
• Alternative MPI implementations / optimizations options 

 



Optimization 1: Communication avoidance 

 Perform redundant FFT computation on each node (32 cores) 

 Avoid broadcasting fields across nodes 

 Avoid poor scaling of multi-node FFT 
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FFT base 

avoidance avoidance 

base 

get-global-En 
(MPI_Allgather) 



Optimization 1: Communication avoidance 

avoidance 

Propagate-total 

base 

Scaling better 
• At 256 cores/8 nodes:  

90 sec vs. 11 sec 
 
But still terrible 
• Best performance at 32 

cores/ 1 node 
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Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

• Extra FFT computation on each node 
• Alternative FFT implementations 
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  Global communication dominates 
 

• Extra FFT computation on each node (comm. avoidance) 
 Reduce MPI tasks (simplifies traffic routes) 
 Use multi-threading to offload intra-node communications 
• Alternative MPI implementations / optimizations options 

 



Optimization 2: MPI + OpenMP Hybrid 

 MPI + OpenMP 

 OpenMP inside of a node, and MPI between nodes 

 

 Shared memory (multi-threading)  
 vs. Distributed memory (multi-tasking) 

 Direct access of other threads’ memory without the need of 
communication overhead 

 Need to deal with race condition to avoid data pollution 

 Possible memory contention 

 NUMA effects 
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Optimization 2: MPI + OpenMP Hybrid 

 Communication improves significantly 
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OpenMP 

get-global-rho (MPI_Allreduce) 

avoidance 

base 

OpenMP 

get-global-En 
(MPI_Allgather) 

avoidance 

base 



Optimization 2: MPI + OpenMP Hybrid 

 FFT (FFTW) deteriorated; independent ops affect by NUMA 
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OpenMP 

get-phi2 (FFT) 

avoidance 

base 

OpenMP 
one copy of shared data 

Independent-operations-total 

base + avoidance 
N copies of distributed 
data 

1 task x n threads 
n/32 task x 32 

threads 



Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

• Extra FFT computation on each node 
 Alternative FFT implementations 
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  Global communication dominates 
 

• Extra FFT computation on each node (comm. avoidance) 
• Reduce MPI tasks (simplifies traffic routes) 
• Use multi-threading to offload intra-node communications 
• Alternative MPI implementations / optimizations options 

 



Optimization 3: Customized parallel 3D-FFT 

FFTW3 (OMP) 

get-phi2 (FFT) 

avoidance (MPI) 

base (MPI) 

OpenMP FFT Best 3D-FFT 
performance we 

have so far 
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Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

• Extra FFT computation on each node 
• Alternative FFT implementations 
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  Global communication dominates 
 

• Extra FFT computation on each node (comm. avoidance) 
• Reduce MPI tasks (simplifies traffic routes) 
• Use multi-threading to offload intra-node communications 
 Alternative MPI implementations / optimizations options 

 



Optimization 4: MPI optimizations 

get-global-rho 
(MPI_Allreduce) 

Base + “Loadbalance” 

Base 
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Hybrid + “Loadbalance” 

$ mpirun --loadbalance -np N application 



Optimization Approaches 
Medium problem sizes 

 

  Multi-node FFT scales poorly using FFTW 
 

 Extra FFT computation on each node 
 Alternative FFT implementations 
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  Global communication dominates 
 

 Extra FFT computation on each node (comm. avoidance) 
 Reduce MPI tasks (simplifies traffic routes) 
 Use multi-threading to offload intra-node communications 
 Alternative MPI implementations / optimizations options 

 



Optimization 1+2+3+4: Final scaling 
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Much improved scaling 
• Scales up to 128 cores 
 
Better peak performance 
• 2.93 sec vs. 6.22 sec 
• A factor of 2 improvement 
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GPU accelerated  
Synergia 



GPU device 

Parallel PIC + CUDA 

Task-2 Task-3 Task-N 

• Excessive number of threads at finer granularity 
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MPI Task-1 

T1,1 T1,2 T1,3 

T1,1 

T2,1 

T3,1 

CUDA threads 
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CUDA-fication of the PIC Code 

1. Bunch, statistics and diagnostics: 
 

• Calculate the mean and standard deviation of coordinates 
and momentums for particles in the bunch 

 
 

1. Charge deposition: 
 

• One macro particle can contribute up to 8 grid cells 

CUDA: Parallel reduction 

CUDA: Sort particle to cell and    
 use interleaved updates to 
 avoid race condition 
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CUDA-fication of the PIC Code 

Sort particles to cells 
& interleaved deposition 

 

t4

thread block

t1
t2

t3

List of particles 
Grid cells 
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CUDA-fication of the PIC Code 

3. Green function: 
 

 
 
 

4. Poisson solver: 
 

CUDA: One thread per cell 
   easy parallelizable 

CUDA: CUFFT library for 
   Fourier transforms 
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CUDA-fication of the PIC Code 

5. Electric field: 
 

 
 
 

 
 
 

6. Apply kick: 
 

• Advance the position and momentum for each particle in the bunch 

 

CUDA: use shared memory to reduce 
   the global memory access 

CUDA: One thread per cell. Keep particles sorted for grouped access of En 
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Performance Comparison for Operations 

1. Intel Xeon X5550, single process @ 2.67GHz;  

2. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU 

3. Nvidia Tesla C1060 x 4 
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Overall Performance Comparison 

1. Intel Xeon X5550, single process @ 2.67GHz;  

2. Fermilab Wilson Xeon Cluster, dual Xeon X5650 2.67GHz nodes. 16 nodes / 128 cores used 

3. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU 

4. Nvidia Tesla C1060 x 4 

 

 


